Micro-saignements cérébraux: pertinence clinique

Prof. Charlotte Cordonnier

Service de Neurologie et pathologie neurovasculaire CHU Lille, Univ Lille,

INSERM U1172- Lille Neurosciences & Cognition

Déclarations d'intérêt

Investigateur études cliniques (< 5 years) - Pas de financement personnel

BMS, Bayer, Biogen

Board d'experts

Bayer – Biogen - Amgen

Stocks, **Travels**

Aucun

Financements via CHU Lille ou ADRINORD

Brain microbleeds: What are they?

Criteria, imaging parameters

- Black & Blooming
- on GRE T2* or SWI MRI
- Round or ovoid
- Devoid of T2-weighted hyperintensity
- At least half surrounded by brain parenchyma
- Clinical history excluding traumatic diffuse axonal injury
- Less than 10mm

Microbleeds: a radiological construct

T2

Influence of radiological parameters on detection rate

E 3 T GRE 3 T SWAN

1,5 T GRE

Histological substrate

Focal leakage of haemosiderin from abnormal small blood vessels affected by lipohyalinosis or arising from arteries affected by amyloid deposition

Fazekas F, AJNR, 1999

From a radiological construct to histological correlates

-Rupture microvessel wall-Blood extravasation-Iron deposition (old BMBs)

van Veluw SJ et al. Neurology 2016

Birth of a Brain MicroBleed

Boulouis G, JAMA Neurol 2017

Bleeding or leaking?

What are the mechanisms underlying BMBs?

Charidimou A & Werring DJ; Cambridge university press; 2011

Microvessel wall fragility

CAA type .

What are the mechanisms underlying BMBs ?

Neuroinflammation

Kozberg MG, Brain Comm 2022

What are the mechanisms underlying BMBs ?

BMB in histology

Neuroinflammation Recent lesion Chronic lesion Consequence of BMBs.... 📕 Necrosis 📕 Microglia/MP activation Vessel Astrocytes activation Blood extravasation Disruption CC 2023

Iron accumulation

A. Events leading to microbleeds

CC 2023

CC 2023

Multiple settings

Dementia

Prevalence

Cordonnier C, Brain 2007.

What do BMBs mean?

Markers of vessel disease

Importance of the anatomical distribution

Deep perforating vasculopathy

°.00-

Thal JNEN 2003

Cerebral amyloid angiopathy

Markers of disease

From micro to macro: is there a continuum?

Greenberg S. Stroke

How to interpret BMBs?

Markers of the <u>SEVERITY</u> of the underlying vessel disease

Prevalence

First ever < Recurrence CMHs could be a biomarker of the evolutivity, severity of the cerebrovascular disease

Prognostication : risk of macrobleeding

Importance of anatomical distribution

BMB presence exposes to an increased relative risk of :

 $\mathsf{ICH}\times\mathbf{6}$

Puy L et al.; JNNP 2021

Prognostication : markers of bleeding, but not only...

Importance of anatomical distribution

BMB presence exposes to an increased relative risk of :

$ICH \times 6$

Ischemic stroke $\times 2$

Puy L et al.; JNNP 2021

CC 2023

BMB: silent lesions?

BMB are not silent lesions!

 BMB could have direct effects on neurologic function, cognition, and disability (with <u>interactions</u>)

Choi, Stroke 2012

• BMB were associated with clinical disability in CADASIL

Viswanathan, Brain 2006

• Patients with BMB performed worse in executive function

Werring, Brain 2004

• BMB influence cognition

Infratentorial Frontal, temporal or deep van Es, Neurology 2011 van Norden, Stroke 2011

CC 2023

BMB predictors of dementia after ICH

Predictors amongst others

	Subhazard ratio	95% CI	p value
Disseminated superficial siderosis	7.45	4.27-12.99	<0.0001
Cortical atrophy score per 1-point increase	2.61	1.70-4.01	<0.0001
>5 cerebral microbleeds	2.33	1.38-3.94	<0.0001
Older age per 10-year increase	1.34	1.00-1.79	0.03

218 ICH patients Median FU: 6 years Incidence rate 28% (95%CI 22-35) @ Y4

Moulin S. Lancet Neurol 2016

Influence on cognition

• Potential impact of the number & location of microbleeds

BMBs & treatment decisions

BMB and treatment decisions in the context of stroke

BMBs & i.v. rtpa

• i.v r-tpa or not?

BMBs & mechanical thrombectomyTo reperfuse or not?

Should we start anti-thrombotic agents after ischaemic stroke in the presence of BMBs ?

Study	Populatio n, n	Type of stroke	Proportion baseline CMBs	Therapeutic arms	Follow-up	Main results
SPS3 trial	1278	Lacunar strokes	30%	Aspirin Vs Aspirin + Clopidogrel	3.3 y	no significant interactions noted between baseline CMB presence and random assignment Tt for the outcomes of recurrent stroke
PICASSO trial	1534	IS with a history of ICH or > 1 CMB	60%	Aspirin Vs Cilostazol	1.9 y	-risk of sICH was lower with cilostazol than aspirin in participants with CMBs (0.12%/year vs. 1.49%/year) -No difference in participants with prior sICH (1.26%/year vs. 0.79%/year)
NAVIGATE ESUS	3699	ESUS	11%	rivaroxaban 15 mg daily compared with aspirin	11 Mo	-No suggestion of a treatment effect for the outcome sICH between baseline presence, location or severity of CMBs (participants with CMBs: HR 3.1, 95%CI 0.3 - 30.0; without CMBs: HR 3.0, 95%CI 0.6 - 14.7; interaction p=1.0).

 No interaction between baseline presence, location and severity of MBs for the outcome « recurrent stroke » or « ICH » and antithrombotic drug (AAP or OAD) Should we start anti-thrombotic agents after ischaemic stroke in the presence of BMBs ?

- BMBs does not seem to modify the effect of antithrombotic agents on the risk of ICH
- Current evidence does not justify withholding the evidence-based treatments from stroke patients solely on the basis of BMBs on MRI
- It is not recommended to always perform an MRI before introducing anti thrombotic agents to screen for BMBs

Time to look beyond the vessel

CC 2023

Importance of haemostasis?

- Influence of haemostatic disorders per se?
- Or do you need an underlying vessel defect?
- Very few data available on this topic

BMB in haemophilia

- N=31
- mean age 43 years
- 23% hypertension)
- 35% with at least one BMB

Husseinzadeh H et al., Haemophilia 2018

Cordonnier C et al., 2011

Fig. 3. Cognitive profile in subjects with and without microbleeds on brain MRI. The vertical bars show confidence intervals of 0.95.

• N=44

- mean age 35 years
- 20% hypertension
- 3/44 had BMB
- Mild cognitive impairment is frequent

Zanon E et al., Thromb Research 2014

BMB in transcatheter aortic valve replacement

- 1 patient out of 4 has BMB before
- 1 patient out of 4 has BMB after
- Associated factors with new BMB
 - Prolonged procedure → Anticoagulation management
 - vWF multimer defect

Long term impact of function and future stroke risk unknown

BMB: risk markers for future anti-amyloid treatment in Alzheimer's disease

Screening for BMB at enrollment With specific MRI sequences Monitoring during treatment Risk of serious adverse events

Take home message

- Radiological construct
- Markers of vessel disease : diagnostic tool
- Markers of the severity of the vessel disease: prognostic tool
- Not a silent lesion
- No interaction with antiplatelet agents
- Possible interaction with anticoagulants: but benefit > risk ?
- Interaction with haemostatic defects \rightarrow ? Interaction with vessel disease?

Micro-saignements cérébraux: pertinence clinique

Prof. Charlotte Cordonnier

Service de Neurologie et pathologie neurovasculaire CHU Lille, Univ Lille,

INSERM U1172- Lille Neurosciences & Cognition

