Congrès Français d'hémostase

10-12 MAI 2023

Palais des Congrès

Saint-Malo

Le Grand Large

Agonistic nanobodies stimulating protein S function : sailing the unknown

François Saller, PhD

La science pour la santé _____ From science to health

Disclosures for François Saller, PhD

Research funded by the Agence Nationale de la Recherche (ANR)

Research funded by CSL Behring

Anticoagulant functions of PS

Walker. J Biol Chem 1980 ; Shen & Dahlbäck. J Biol Chem 1994 ;

Gale et al. J Biol Chem 2008

Anticoagulant functions of PS

Gale et al. J Biol Chem 2008

Anticoagulant functions of PS

Reglinska-Matveyev *et al*. Blood 2014 ; Dahlbäck *et al*. RPTH 2018

Physiological importance of anticoagulant protein S (PS)

Mild deficiency

Severe deficiencyCongenitalAcquiredCongenitalCongenital

Recurrent thrombo-embolic events Deep Vein Thrombosis (DVT) Pulmonary Embolism (PE)

Microvascular thromboses

Disseminated Intravascular Coagulation (DIC)

Purpura fulminans

Cutaneous necrosis

Regnault et al. J Thromb Haemost 2005 ; Domergue et al. Ann Chir Plast Esthet 2006

Llama

« **Nanobodies** » or single-domain antibodies (sdAbs)

Small, stable, soluble at high concentrations High tissue penetration Low immunogenicity per se Easy engineering and expression in *E. coli* Recognition of cryptic & original epitopes Can be identified by phage-display

Identification of anti-PS nanobodies by phage-display

Identification of anti-PS nanobodies by phage-display

Plasma-based APC-cofactor activity assay

APTT-based assay (STACLOT[®] PS)

4)

6)

5)

rhPS 25 µL 1) + Bovine FVa 25 µL 2) 3) + APC 25 µL

2 min, 37°C

+ 25 mM CaCl₂ (25 μL)

Coagulation

rhPS dose-dependently prolongs clotting times measured only in the presence of APC

Functional screening of anti-PS nanobodies

Josepha Clara Sedzro

PS003 appeared to enhance the APC-cofactor activity

of PS in this assay !!

Congrès Français d'hémostase Saint-malo le cargets

Generation of monovalent and bivalent forms of PS003

Sedzro et al. JTH 2022

 $K_{d app} = 2.8 \pm 0.6 \text{ nM}$ for PS003biv

Effects of PS003 in our APC-cofactor activity assay

In the presence of APC

Effects of PS003 in our APC-cofactor activity assay

In the presence of APC

Bivalent PS003biv has a significantly greater enhancing effect than monovalent PS003

Effects of PS003 in our APC-cofactor activity assay

The functional effects of PS003 and PS003biv are **highly dependent on PS and APC** No effects on **APC-independent** anticoagulant activities of PS

Effects of PS003 in a thrombin generation assay (TGA)

Thrombin generation triggered by **1 pM tissue factor** (and 4 µM PL) in the **presence of APC** (30 nM)

In a **PS-depleted plasma** supplemented with a **normal plasma** as a source of PS

Effects of PS003biv on FVa inactivation by APC/PS

Coagulation

FXa one-stage clotting assay

1)

- **PS-deficient** plasma (40 µL)
- + RVV-X (0.01 nM) 20 μL 2)
- + Purified APC (6.8 nM) 20 μL 3)
- + rhPS (50 nM) ± sdAb (1.2 μM) 20 μL 4)

+ PL (10 μM) 20 μL

- 5) 2 min, 37°C
- + 25 mM CaCl₂ (50 μL) 6)

PS003biv appears to enhance FVa inactivation by APC

in our plasma-based assay

Claire Auditeau PhD student

Effects of PS003biv on FVIIIa inactivation by APC/PS

Modified plasma-based chromogenic FVIIIa activity assay (BIOPHEN[™] FVIII:C kit, HYPHEN BioMed) **PS-deficient plasma** + rhPS + APC

Absorbance (405 nm)

Claire Auditeau PhD student

N.S. 1.2 -.25 Abs_{+PS} / Abs_{-PS} ratio of PS cofactor activity 1.0 1.00 0.8 0.75 % 0.6 0.50 -200 0.4 0.25 0.2 0.0 -0.0 Buffer LiBiv 03biv rhPS Buffer

Sedzro et al. JTH 2022

PS003biv did not enhance FVIIIa inactivation by APC

in this plasma-based assay

Functional effects of PS003

APC-cofactor activity

Plasma-based assays

Functional effects of PS003

APC-cofactor activity

$TFPI\alpha$ -cofactor activity

Purified systems

Functional effects of PS003

Unexpected and **mysterious** enhancing effect

The mechanism of action is still unknown !!

Saposnik *et al*. Biochem J 2003

Saposnik et al. Biochem J 2003

Saposnik *et al*. Biochem J 2003

Al Kafri et al. Biochem Biophys Rep 2022 Reglinska-Matveyev et al. Blood 2014 Evena s P et al. Thromb Haemost. 2000 Nyberg P et al. FEBS Lett. 1998

PS/Gas6 chimeras

Josefin Ahnström Imperial College London, UK

Evena s P et al. Thromb Haemost. 2000 Nyberg P *et al*. FEBS Lett. 1998

Al Kafri *et al.* Biochem Biophys Rep 2022 Reglinska-Matveyev *et al.* Blood 2014 Evena s P et al. Thromb Haemost. 2000 Nyberg P *et al.* FEBS Lett. 1998

Both LG1 and LG2 domains appear necessary

for the interaction between PS and PS003

PS003 does not inhibit binding of PS to

C4b-binding protein (C4BP) and TFPI α

Novel structural model of the PS SHBG domain

Al Kafri et al. Biochem Biophys Rep 2022

Bruno Villoutreix INSERM UMR 1141 Paris, France

Molecular docking of PS003 onto the PS SHBG domain

PS003

Bruno Villoutreix INSERM UMR 1141 Paris, France

A novel agent enhancing the APC-cofactor activity of PS

A novel agent enhancing the APC-cofactor activity of PS

In vivo antithrombotic effects of PS003biv

Frédéric Adam (UMR-S1176)

In vivo antithrombotic effects of PS003biv

Frédéric Adam (UMR-S1176)

Administration of PS003biv results in delayed occlusion times associated with

thrombus instability in mesenteric vessels

Effects of PS003biv on physiological hemostasis

Tail-clip **bleeding model**

PS003biv has no significant effects on bleeding times and blood loss volumes

PS003 might be an attractive antithrombotic strategy

Enhances the anticoagulant function of APC By targeting PS Exerts antithrombotic effects in mice Sparing physiological hemostasis in mice

In (thrombotic) diseases with :

- Defective protein C activation
- APC-resistance
- Acquired Protein S and/or Protein C deficiency

Causes

PS deficiency and APC-resistance in Sickle Cell Disease

PS levels are significantly reduced in SCD patients

- Further reduction during vaso-occlusive crises (VOC)
- Binding to **PtdSer-exposing RBCs** and enhanced PS clearance ?
- Consumption after coagulation hyperactivation ?
- Hypoxia-induced reduction of PS ?
- Hepatic dysfunctions ?

	Control $(n = 25)$	SCD (<i>n</i> = 25)	P value
Baseline TAT (ng mL ⁻¹) phosphatidylserine+ RBCs (%)	$\begin{array}{c} 2.3\pm1.1\\ 0.26\pm0.25\end{array}$	$\begin{array}{c} 10.2\pm9.5\\ 4.8\pm4.0\end{array}$	0.0004 <0.0001
Protein C (% activity)	126 ± 32	81 + 21	0.0036
Protein S (% activity) Protein S (% free antigen)	$\begin{array}{c} 88\pm18\\ 81\pm17\end{array}$	$53 \pm 20 \\ 58 \pm 18$	0.0005 0.0003
Factor V (% activity) Factor VIII (% activity) TFPI (% antigen)	89 ± 21 112 ± 25 86 ± 33	97 ± 29 179 ± 45 83 ± 24	0.3027 0.0003 0.6659

TAT, thrombin-antithrombin complexes; RBCs, red blood cells; TFPI, tissue factor pathway inhibitor.

Causes

PS deficiency and APC-resistance in Sickle Cell Disease

PS levels are significantly reduced in SCD patients

- Further reduction during VOC
- Binding to **PtdSer-exposing RBCs** and enhanced PS clearance ?
- Consumption after coagulation hyperactivation ?
- Hypoxia-induced reduction of PS ?
- Hepatic dysfunctions ?

	Control $(n = 25)$	SCD (<i>n</i> = 25)	P value
Baseline TAT (ng mL ⁻¹) phosphatidylserine+ RBCs (%)	$\begin{array}{c} 2.3\pm1.1\\ 0.26\pm0.25\end{array}$	$\begin{array}{c} 10.2\pm9.5\\ 4.8\pm4.0\end{array}$	0.0004 <0.0001
Protein C (% activity)	126 ± 32	81 + 21	0.0036
Protein S (% activity) Protein S (% free antigen)	$88 \pm 18 \\ 81 \pm 17$	$53 \pm 20 \\ 58 \pm 18$	0.0005 0.0003
Factor V (% activity) Factor VIII (% activity) TFPI (% antigen)	89 ± 21 112 ± 25 86 ± 33	97 ± 29 179 ± 45 83 ± 24	0.3027 0.0003 0.6659

TAT, thrombin-antithrombin complexes; RBCs, red blood cells; TFPI, tissue factor pathway inhibitor.

Kalembur et al. Am J Hematol 2004

Kalembur et al. Am J Hematol 2004

Sparkenbaugh et al. Blood 2020

Kalembur et al. Am J Hematol 2004

Sparkenbaugh et al. Blood 2020

Kalembur et al. Am J Hematol 2004

Sparkenbaugh et al. Blood 2020

Effects of PS003biv in a mouse model of VOC

Effects of PS003biv in a mouse model of VOC

Effects of PS003biv in a mouse model of VOC

Hemolysis

---- HbSS - Vehicle

Claire Auditeau. CO 09. CFH 2023

Conclusions

- A nanobody enhancing the function of a physiological inhibitor of coagulation can be identified
- Originality comes with complexity !
- **Not yet elucidated** mechanism(s) of action
- **Therapeutic potential** of enhancing the APC-cofactor activity of PS
- **Protective** in models of VOC in SCD mice
- Optimization of **pharmacological properties** needed (*e.g.* half-life, humanization)
- This nanobody stimulates new research projects (PROSICK project, funded by the ANR)

Acknowledgments

HITh INSERM UMR 1176 Hémostase Inflammation - Thrombose

Delphine Borgel Josepha Clara Sedzro Claire Auditeau Ivan Peyron Gabriel Aymé Allan De Carvalho Sadyo Daramé Frédéric Adam Elsa Bianchini Sophie Moog Olivier Christophe Peter Lenting Cécile Denis

