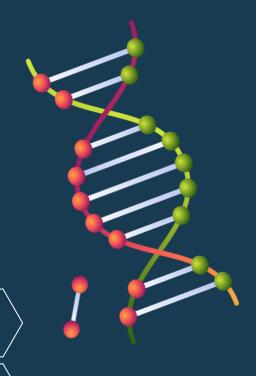

DPNI des maladies monogéniques

Etat des lieux et perspectives

Fédération de Génétique et de Médecine Génomique APHP.Centre - Université Paris Cité - Hôpital Cochin

- Plusieurs milliers de gestes invasifs réalisés chaque année
 - → Anxiété accrue pour les parents
- Avancées de la médecine génomique et prénatale
 Options thérapeutiques in utero ou en période néonatale
- Nécessité de proposer un diagnostic prénatal précoce, fiable et sûr
 - → Permettre aux parents de prendre des décisions éclairées
 - → Adapter la prise en charge de la grossesse et de l'accouchement...

Tableau DPN2. Résumé de l'activité de DPN en 2023										
	Nombre de laboratoires avec une activité	Nombre d'examens ⁽¹⁾	Nombre de résultats positifs ⁽²⁾							
Génétique										
ADNIc : dépistages d'aneuploïdies	23	124861	1712							
ADNIc : déterminations du rhésus fœtal	12	71361	23566							
Caryotypes avec ou sans ACPA	47	13434	3679							
ACPA seule	37	8465	385							
Maladies monogéniques ⁽³⁾	55	2958	506							
Biologie infectieuse										
Virologie	31	4428	234							
Toxoplasmose	26	827	45							
Biochimie et marqueurs sériques										
Marqueurs sériques maternels	65	601326	111779							
Défaut de fermeture du tube neural	5	278	174							


Rapport Annuel 2023 – Agence de Biomédecine

Le "D" de DPNI... Diagnostic ou Dépistage ?

DPNI des aneuploïdies → Dépistage

Risque de faux positifs dus aux mosaïques confinées au placenta Nécessité de confirmation par un test invasif

Tests ciblés pour grossesses à haut risque Pas de mosaïques confinées au placenta pour les variants hérités Pas de nécessité de confirmation par un test invasif

DPNI maladies monog → Dépistage

Tests commercialisés à l'étranger Grossesses à bas risque, plusieurs gènes ciblés Nécessité de confirmation par un prélèvement invasif Controverse ++

Mutant WT allele

Détection Qualitative de Variants Absents du Génome Maternel

- Maladies associées à des variants de novo
 - Achondroplasie, TD, Syndrome d'Apert... → SAE ou mosaïque germinale
- Maladies dominantes de transmission paternelle
- Neurofibromatose de Type 1...... → risque de transmission = 50%
- Diagnostic d'exclusion des maladies récessives
 - Mucoviscidose, Beta-thalassémie... → risque de ti
 - → risque de transmission = 25%

Orhant et al, Prenat Diag, 2016 Gruber et al, Clin Chem Lab Med, 2018 Pacault et al, , BJOG, 2022 Verebi et al, GOFS, 2023

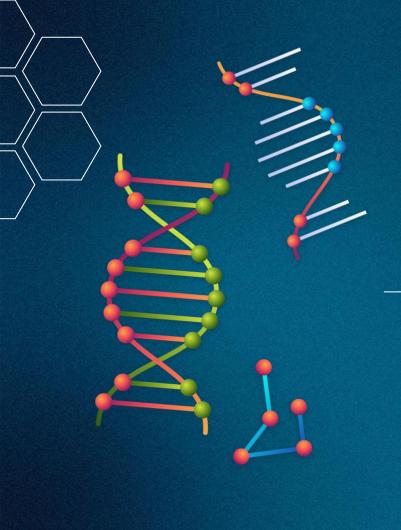
- Maladies associées à des variants de novo
 Achondroplasie, TD, Syndrome d'Apert... → SAE ou mosaïque germinale
- Maladies dominantes de transmission paternelle

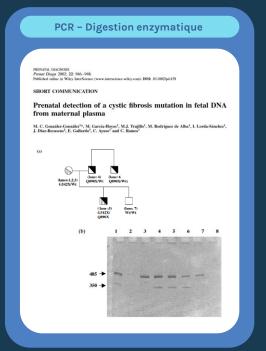
 Neurofibromatose de Type 1...... → risque de transmission = 50%
- Diagnostic d'exclusion des maladies recessives

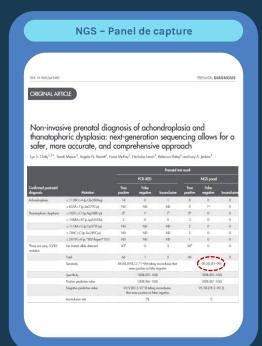
 Mucoviscidose, Beta-thalassemie... → risque de transmission

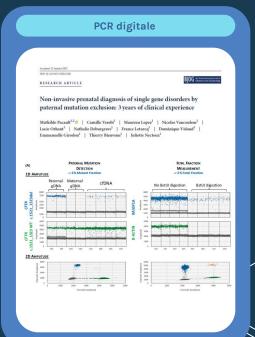
Orhant et al, Prenat Diag, 2016 Gruber et al, Clin Chem Lab Med, 2018 Pacault et al, , BJOG, 2022 Verebi et al, GOES, 2023

Détection Quantitative de Variants Présents dans le Génome Maternel


- Maladies liées à l'X
 Dystrophie musculaire de Duchenne, Hémophilies...
- Maladies dominantes de transmission maternelle
 Neurofibromatose de Type 1, Syndrome de Marfan ...
- Maladies récessives
 Mucoviscidose, Amyotrophie spinale, Drépanocytose...


Pacault et al, PlosOne, 2023





Détection qualitative de variants absents du génome maternel

Evolutions techniques

PCR digitale ddPCR

Extrême sensibilité et spécificité Essais personnalisés, adaptés aux SNV dans n'importe quel gène

Ressources humaines et financières

01

Préparation de l'échantillon

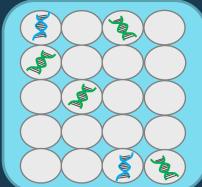
02

Partitionnement

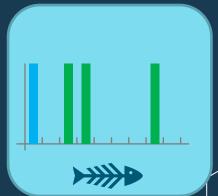
ADN distribué dans les microgouttelettes de l'émulsion

03

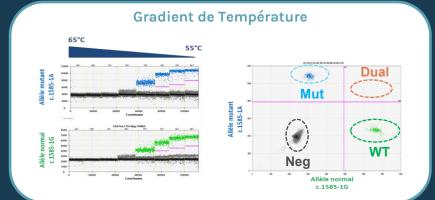
Amplification PCR

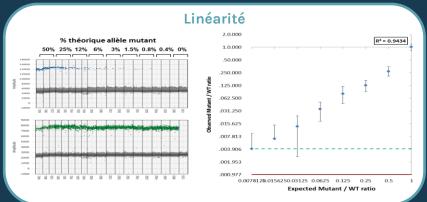


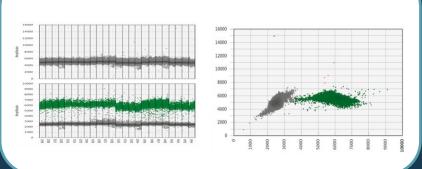
Positive PCR Negative PCR 04


Comptage et Analyse

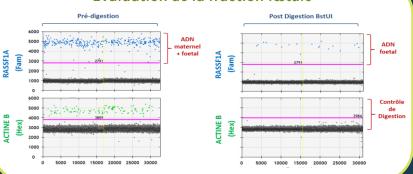
Detection d'un signal fluorescent -> Quantification absolue

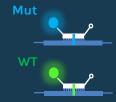




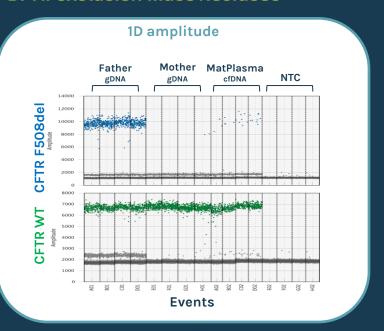


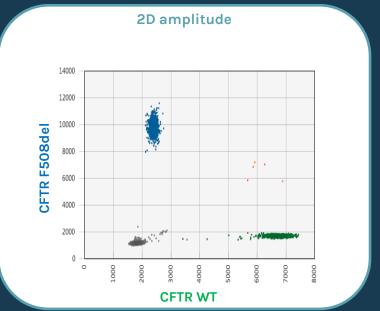
PCR digitale ddPCR



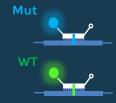


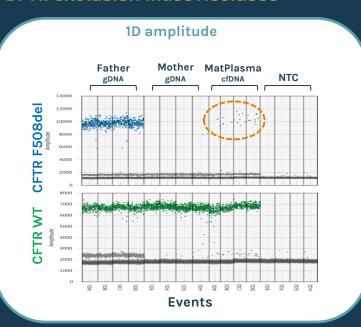
Evaluation de la fraction fœtale

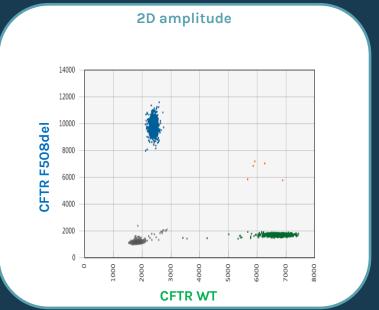

PCR digitale ddPCR

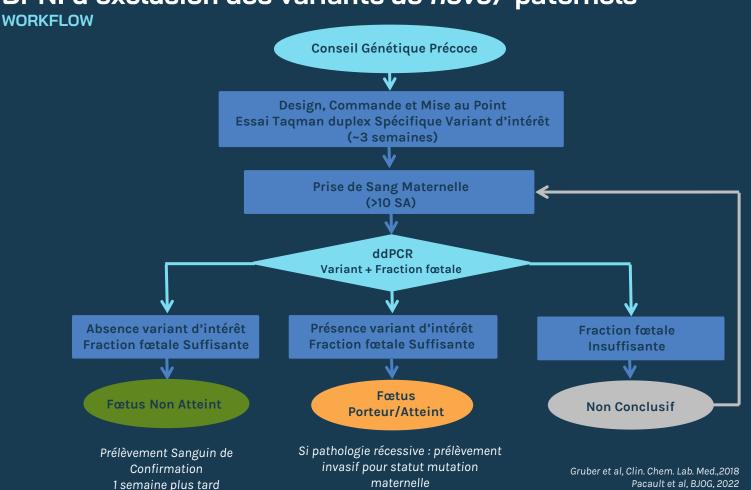


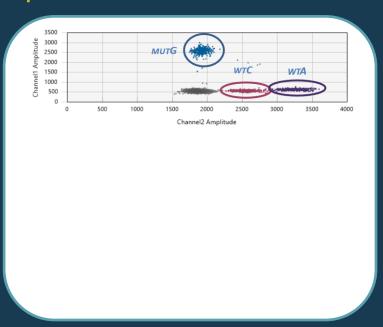
Family 17DP156 CFTR_{pat} p.Phe508del


DPNI exclusion mucoviscidose

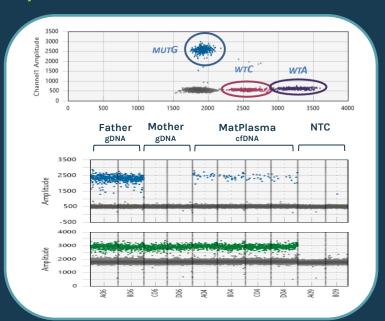



PCR digitale ddPCR


DPNI exclusion mucoviscidose


DPNI d'exclusion des variants de novo/ paternels

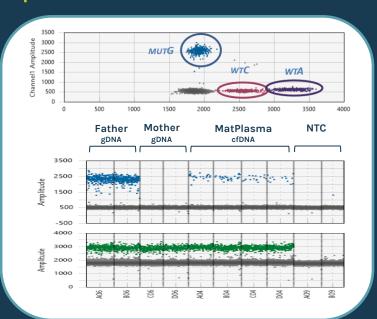
Pacault et al. BJOG. 2022

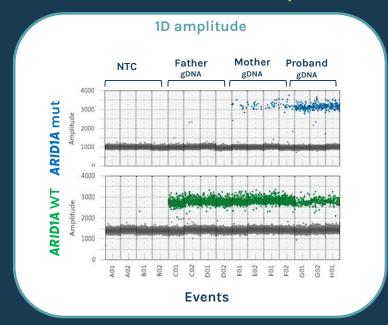

PCR digitale ddPCR

Spécificité: CYP21A2 c.293-13A/C>G

PCR digitale ddPCR

Spécificité: CYP21A2 c.293-13A/C>G

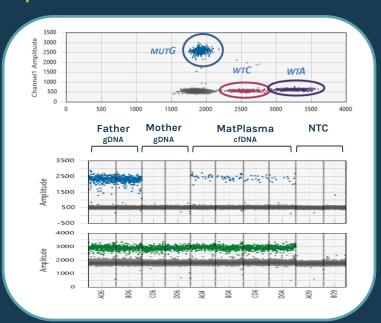




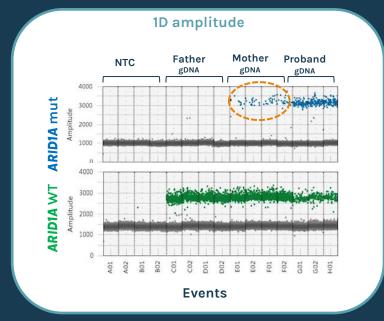
PCR digitale ddPCR

Spécificité: CYP21A2 c.293-13A/C>G

Sensibilité: détection mosaïques



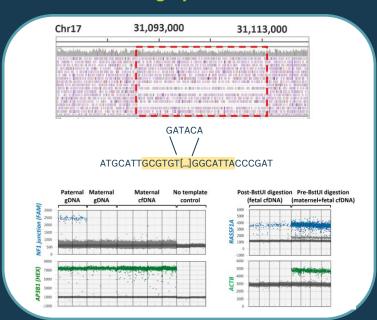
Dr Marie-Claire VINCENT, Dr Margot COMEL & Marina LAMAIRIA, Montpellier



PCR digitale ddPCR

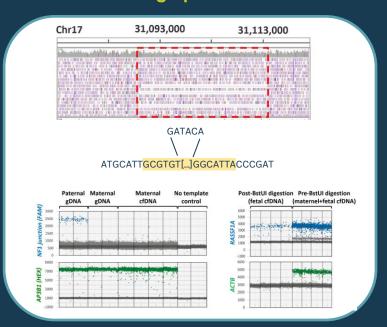
Spécificité: CYP21A2 c.293-13A/C>G

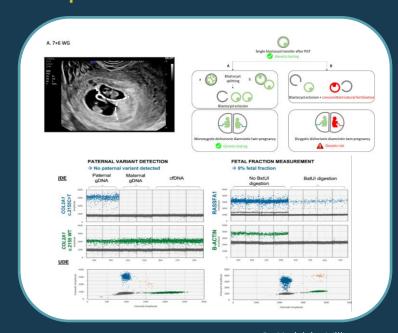
Sensibilité: détection mosaïques



Dr Marie-Claire VINCENT, Dr Margot COMEL & Marina LAMAIRIA, Montpellier

PCR digitale ddPCR


Flexibilité: design personnalisable



PCR digitale ddPCR

Flexibilité: design personnalisable

Complémentarité avec le DPI

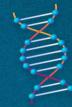
Dr. Dominique Vidaud Pacot et al, Human Genetics, 2022

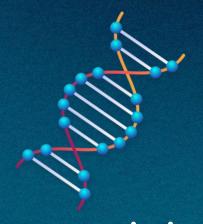
DPNI d'exclusion des variants de novo/ paternels

BILAN D'ACTIVITÉ DU RÉSEAU FRANÇAIS 2017-2024

The French Connection*

	2017	2018	2019	2020	2021	2022	2023	2024	Total
Maladies associées à des variants de novo	28	20	32	38	54	98	150	244	664
Maladies dominantes	3		2	17	23	40	40	51	183
Maladies récessives	21	18	24	49	72	88	128	102	502

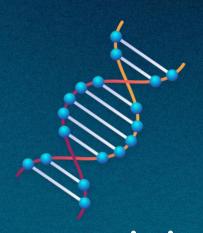

1349


APHP CCH RDB, CHU Montpellier, CHU Brest
A venir: CHU Marseille, CHU Rouen, CHU Lille...

1349 tests

DPNI d'exclusion des variants de novo / paternels

1349 tests

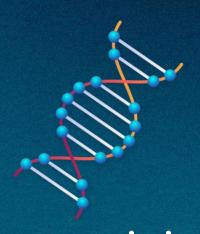

DPNI d'exclusion des variants de novo / paternels

540 essais, 280 gènes

Custom design pour les variants ponctuels, petites indel

1349 tests

DPNI d'exclusion des variants de novo / paternels


540 essais, 280 gènes

Custom design pour les variants ponctuels, petites indel

No, No, No

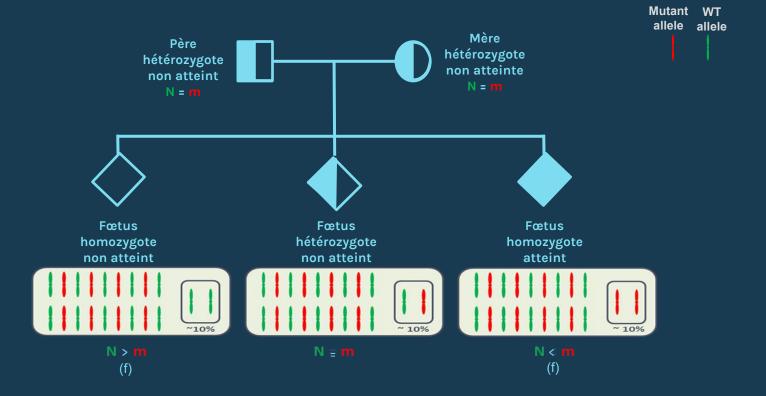
- Maladies associées à des variants de novo Achondroplasie, Dysplasie thanatophore... → SAE ou mosaïque germinale
- Maladies dominantes de transmission paternelle

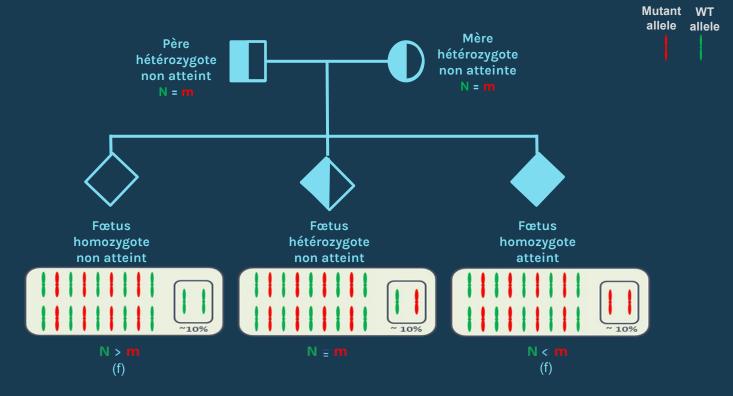
 Neurofibromatose de Type 1...... → risque de transmission = 50%
- Diagnostic d'exclusion des maladies récessives
 Mucoviscidose, Beta-thalassemie... → risque de transmissi

Orhant et al, Prenat Diag, 2016 Gruber et al, Clin Chem Lab Med, 2018 Pacault et al, , BJOG, 2022 Verebi et al. GOFS, 2023

Détection Quantitative de Variants Présents dans le Génome Maternel

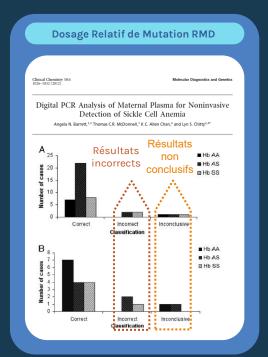

- Maladies liées à l'X
 Dystrophie musculaire de Duchenne, Hémophilies...
- Maladies dominantes de transmission maternelle
 Neurofibromatose de Type 1, Syndrome de Marfan ...
- Maladies récessives
 Mucoviscidose, Amyotrophie spinale, Drépanocytose...

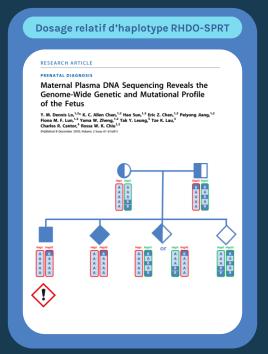

Pacault et al, PlosOne, 2023


Détection quantitative de variants présents dans le génome maternel

Détection Quantitative de Variants Présents dans le Génome Maternel

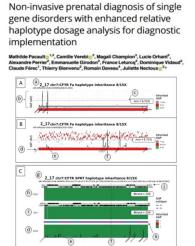
Détection Quantitative de Variants Présents dans le Génome Maternel





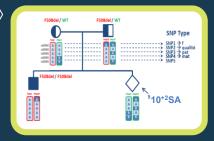
Détection Quantitative de Variants Présents dans le Génome Maternel

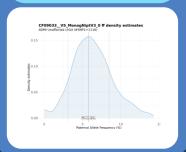
Evolution des solutions proposées



Lun et al, PNAS, 2008 Tsui et al, Blood, 2011 Barrett et al, Clin. Chem., 2012

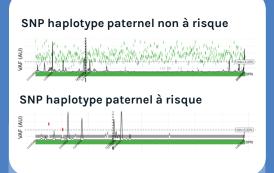
Lo et al, Sci. Transl. Med., 2010 Parks et al, Prenat. Diag., 2016 Parks et al, Eur. Jour. Hum. Genet., 2017 Chandler et al. Clin. Chem.. 2020


Dosage relatif d'haplotype combiné RHDO-SPRT + RHDO-HMM


Pacault et al, PlosOne, 2023

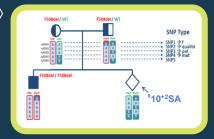
Mucoviscidose

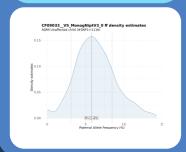
CFTR - Transmission AR



Estimation fraction fœtale (#SNP1→ AA, BB)

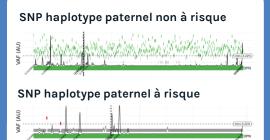
RHDO-SPRT


Détection qualitative de l'haplotype paternel (#SNP3 → AA, AB)

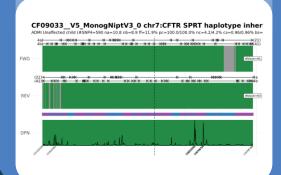

Détection quantitative de l'haplotype maternel (#SNP4 → AB, AA)

Mucoviscidose

CFTR - Transmission AR

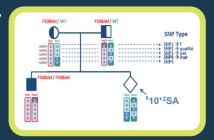


Estimation fraction fœtale (#SNP1-> AA, BB)

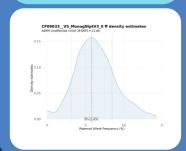


RHDO-SPRT

Détection qualitative de l'haplotype paternel (#SNP3 → AA, AB)



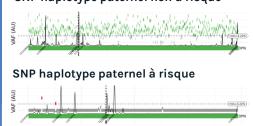
Détection quantitative de l'haplotype maternel (#SNP4 → AB, AA)

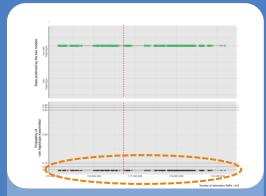


Mucoviscidose

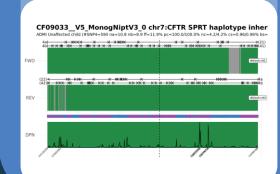
CFTR - Transmission AR

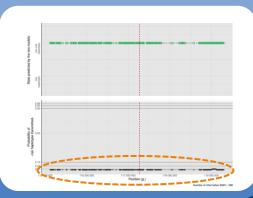
Estimation fraction fœtale (#SNP1→ AA, BB)

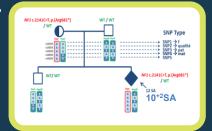


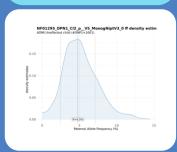

RHDO-SPRT

RHDO-HMM


Détection qualitative de l'haplotype paternel (#SNP3 → AA, AB)

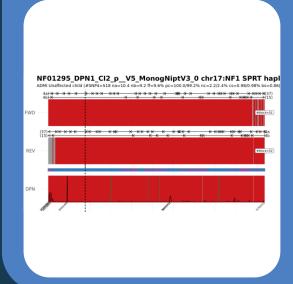


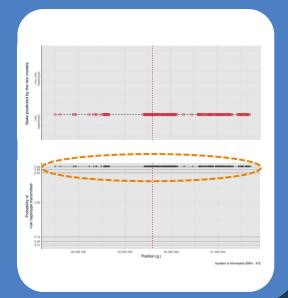

Détection quantitative de l'haplotype maternel (#SNP4 → AB, AA)



Neurofibromatose de type 1

NF1 - Transmission AD

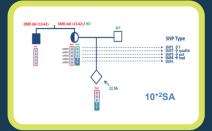

Estimation fraction fœtale (#SNP1→ AA, BB)

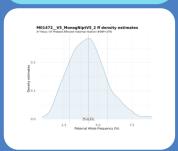


RHDO-SPRT

RHDO-HMM

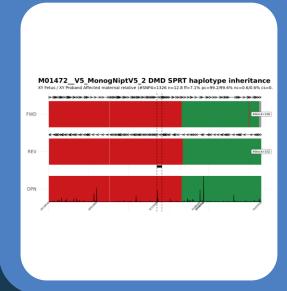
Détection quantitative de l'haplotype maternel (#SNP4 → AB, AA)

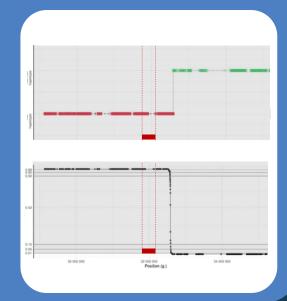



Pacault et al, PlosOne, 2023

Myopathie de Duchenne

DMD - Transmission liée à l'X

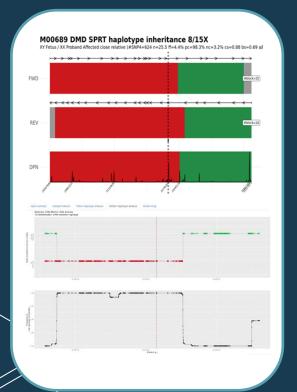

Estimation fraction fœtale (#SNP1-> AA, BB)



RHDO-SPRT

RHDO-HMM

Détection quantitative de l'haplotype maternel (#SNP4 → AB, AA)

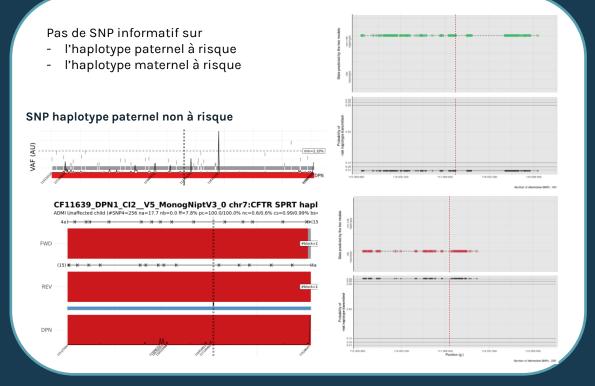


Pacault et al, PlosOne, 2023

Enfin des statistiques!

De l'intérêt de combiner plusieurs approches statistiques

(1) En cas de recombinaison


Enfin des statistiques!

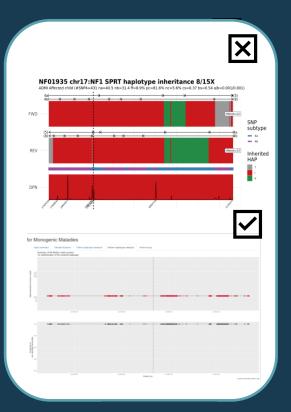
De l'intérêt de combiner plusieurs approches statistiques

(1) En cas de recombinaison

M00689 DMD SPRT haplotype inheritance 8/15X XY Fetus / XX Proband Affected close relative (#SNP4=624 n=25.5 ff=4.4% pc=98.3% nc=3.2% cs=0.88 bs=0.69 a/l

(2) En cas de consanguinité




Enfin des statistiques!

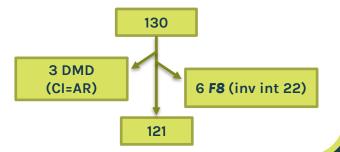
De l'intérêt de combiner plusieurs approches statistiques

(3) En cas non conclusivité de l'une des 2 approches

Etude DANNI

Résultats

- 130 grossesses for 122 familles (12+6 SA, f=10%)
- Mucoviscidose (CFTR) n=57
 - ✓ Autosomal recessive transmission
- Neurofibromatose de type 1 (NF1) n=28
 - ✓ Autosomal dominant transmission
- Myopathie de Duchenne (DMD) n=26
 - √ X-linked recessive transmission
- Hémophilie A (F8) n=16
 - √ X-linked recessive transmission.
- Hémophilie B (F9) n=3
 - √ X-linked recessive transmission



Etude DANNI

Résultats

- 130 grossesses for 122 familles (12+6 SA, f=10%)
- Mucoviscidose (CFTR) n=57
 - ✓ Autosomal recessive transmission
- Neurofibromatose de type 1 (NF1) n=28
 - ✓ Autosomal dominant transmission
- Myopathie de Duchenne (DMD) n=26
 - √ X-linked recessive transmission
- Hémophilie A (F8) n=16
 - √ X-linked recessive transmission.
- Hémophilie B (F9) n=3
 - √ X-linked recessive transmission

RÉSULTATS RHDO-SPRT

- 117/121 analyses avec résultat conclusif & concordant
- 4/121 analyses avec résultat non conclusif
- 0/121 analyses avec résultat discordant

RÉSULTATS RHDO-HMM

- 118/121 analyses avec résultat conclusif & concordant
- 3/121 analyses avec résultat non conclusif
- 0/121 analyzes analyses avec résultat discordant

En combinant les approches SPRT et HMM

Spécificité = 100% (120 concordants /120 conclusifs)

Sensibilité = 99% (120 conclusifs & concordants / 121 résultats)

Etude DANNI_{gene}

DIRECTION GÉNÉRALE DE L'OFFRE DE SOINS

PHRC

The French Connection**

is back

Maladie monogénique	Gène
Drépanocytose	НВВ
Mucoviscidose	CFTR
Syndrome X Fragile	FMR1
Amyotrophie spinale	SMN1
Dystrophie myotonique de Steinert	DMPK
Dystrophie musculaire de Duchenne	DMD
Neurofibromatose de type 1	NF1

Maladie monogénique	Gène
Maladie de Huntington	нтт
Hémophilie A	F8
Hémophilie B	F9
Maladie de Menkes	АТР7А
Hydrocéphalie liée à l'X	L1CAM
Polykystose rénale	PKHD1
Diabète MODY-GCK	GCK

DANNIGENE

• Quand y penser et où envoyer les prélèvements?

Pathologie	Gène	DPN invasif	DPNI (4 tubes BCT)
Maladie de Menkes	ATP7A	Lyon	TOU
Mucoviscidose	CFTR	Besançon ou CCH	CCH (OU BDX, BRE, MPL, STB, TOU)
Myopathie Duchenne/Becker	DMD	ССН	ССН
Dystrophie de Steinert	DMPK	STB	STB (OU BDX, MPL, TOU)
Hémophilie A ou B	F8, F9	-	ССН
Syndrome X Fragile	FMR1	Besançon	CCH (OU BDX, BRE, MPL, STB, TOU)
Drépanocytose	НВВ	Mondor	RDB (OU BDX)
Maladie Huntington	HTT	STB, Nancy	MPL
Hydrocéphalie liée à l'X	LICAM	-	ROU
Neurofibromatose type 1	NF1	ССН	CCH
Polykystose rénale AR	PKHD1	Lyon	BRE
Amyotrophie Spinale	SMN1	ROU	ROU (ou RDB)
Diabète MODY-GCK	GCK	Post natal à PSL	PSL

BDX: CHU Bordeaux; BRE: CHU Brest; CCH: APHP Cochin; MPL: CHU Montpellier; PSL: APHP Robert Debré; ROU: CHU Rouen; STB: CHU Strasbourg; TOU: CHU

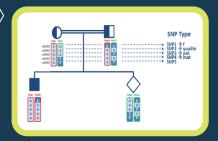
- Compléter
 - Consentement
 - **eCRF**
 - Feuille de suivi du prélèvement

Une question réglementaire? noemie.baudoin@aphp.fr Une question médicale?

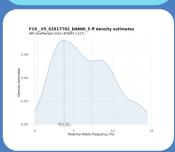
juliette.nectoux@aphp.fr

Date de réunion de mise en place : 90 inclusions à ce jour !!

Inclusion

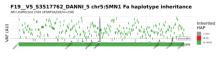

- ✓ Femme enceinte > 9SA
- ✓ Grossesse singleton
- ✓ Effectuant un DPN invasif dans un contexte d'antécédent familial
- ✓ Variant.s pathogène.s paternel et/ou maternel précédemment identifié.s
- ✓ Agée de 18 ans ou plus
- ✓ Ayant signé un consentement éclairé

Non inclusion

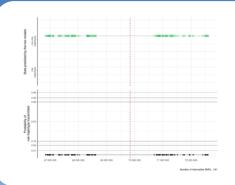

- ✓ DPN sur risque de mosaïque germinale (variant pathogène de novo chez un enfant précédent)
- ✓ Femme sous protection juridique
- ✓ Autre maladie génétique

Etude DANNI_{gene} AMYOTR. SPINALE SMN1 – Transmission AR

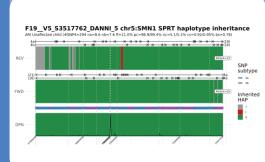
Estimation fraction fœtale (#SNP1 -> AA, BB)

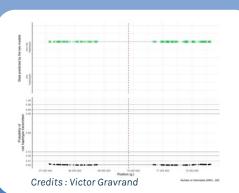


RHDO-SPRT

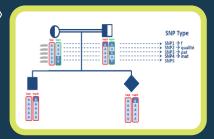

RHDO-HMM

Détection qualitative de l'haplotype paternel (#SNP3 → AA, AB)

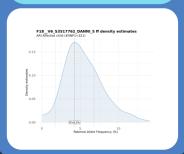

SNP haplotype paternel non à risque


SNP haplotype paternel à risque

Détection quantitative de l'haplotype maternel (#SNP4 → AB, AA)



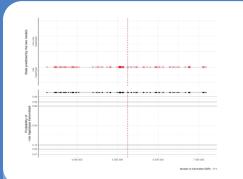
Credits: Joseph Guilliet



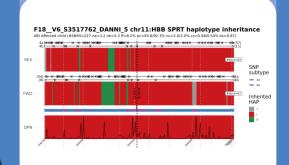
Etude DANNI_{gene} DRÉPANOCYTOSE

HBB - Transmission AR

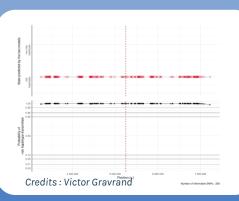
Estimation fraction fœtale (#SNP1→ AA, BB)

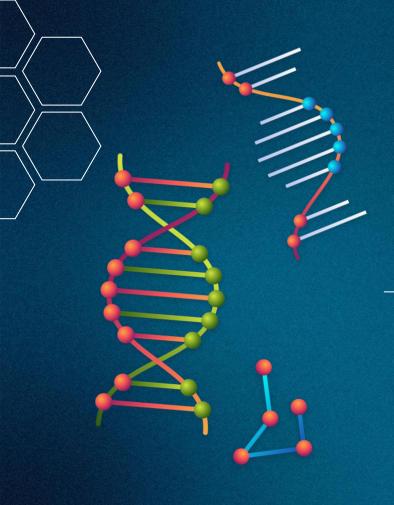

RHDO-SPRT

RHDO-HMM

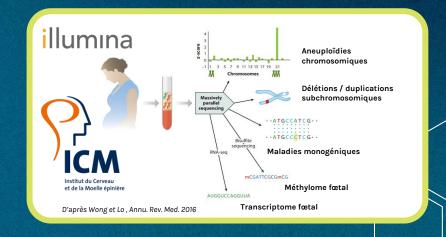

Détection qualitative de l'haplotype paternel (#SNP3 → AA, AB)

SNP haplotype paternel non à risque



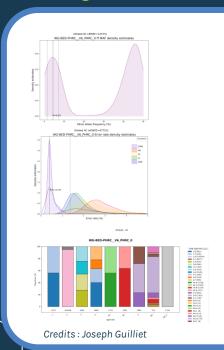


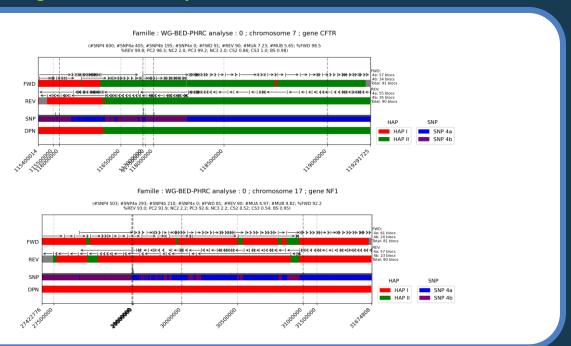
Détection quantitative de l'haplotype maternel (#SNP4 → AB, AA)



Et pour demain... Le DPNI universel ??

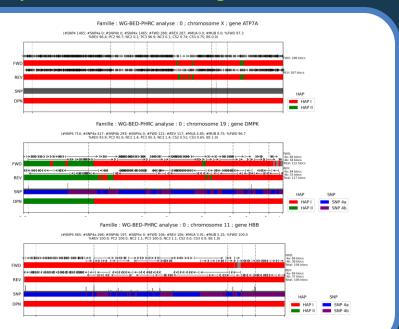
Objectifs du projet


Yannick Marie Delphine Bouteiller

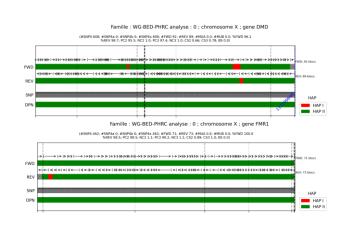

- Proposer une méthode universelle de diagnostic prénatal non invasif des maladies monogéniques en reconstruisant le génome fœtal à partir du plasma maternel
- Preuve de concept sur 3 familles, chaque famille comprenant
 - ✓ ADN constit père (librairies short read + long read ICLR)
 - ✓ ADN constit mère (librairies short read + long read ICLR)
 - ✓ ADN constit cas index (librairie short read uniquement)
 - ✓ ADN constit foetus (librairie short read uniquement)
 - ✓ ADN plasmatique maternel (librairie cell free DNA)
- On vise une profondeur >30X pour tous les ADN constit et entre 100 et 200X pour l'ADN plasmatique.

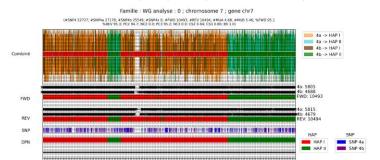
Analyse RHDO ciblée sur les gènes autosomiques de l'étude DANNI

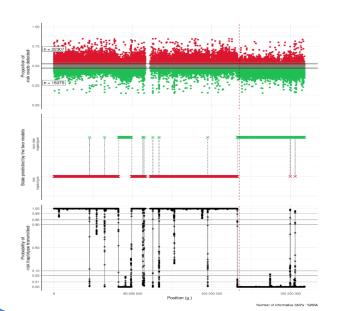


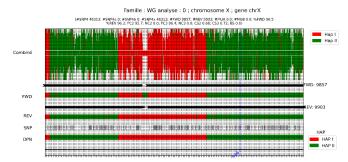


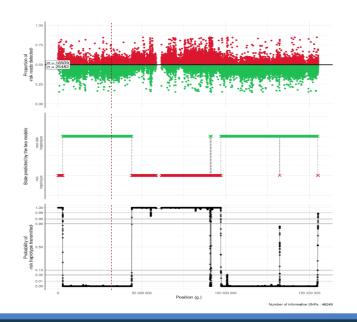
Analyse RHDO ciblée sur les gènes autosomiques de l'étude DANNIgene



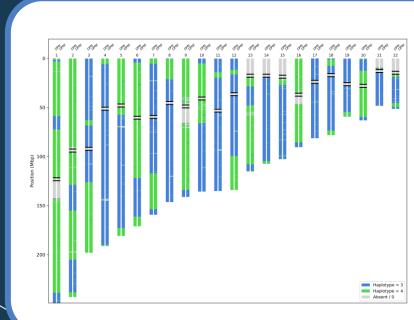

Analyse RHDO ciblée sur les gènes du ChrX de l'étude DANNIgene

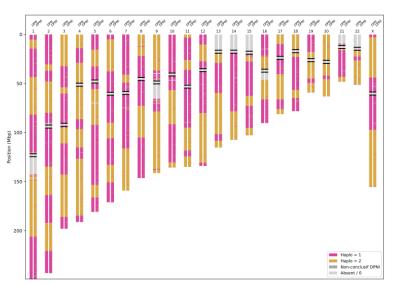



Credits: Joseph Guilliet

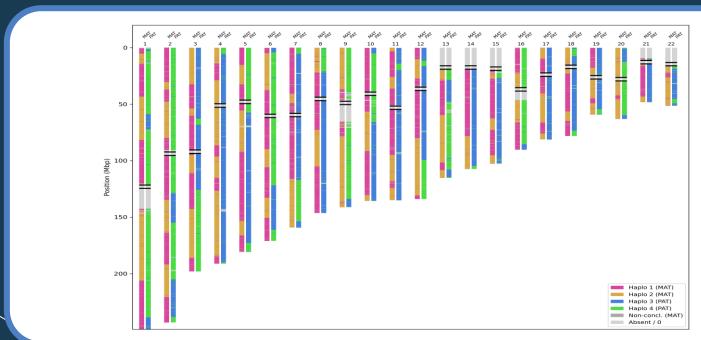

Chr7:1-159,138,663 (soit 159 Mb!!)

chrX:1-155,270,560 (soit 155 Mb!!)



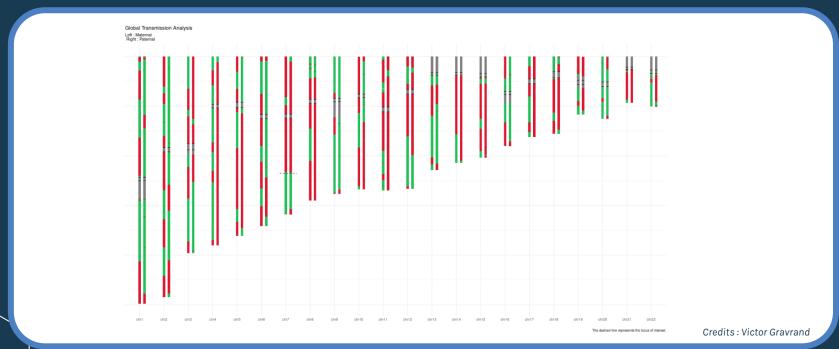


MeioMap RHDO (Father, Mother)

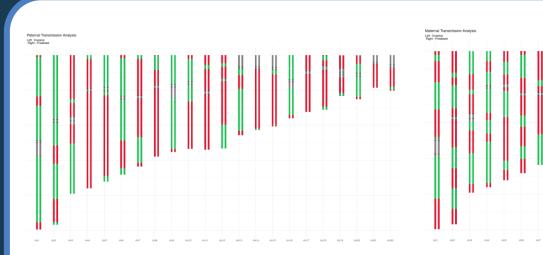


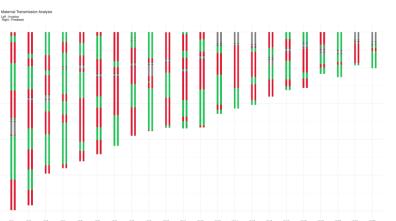
Credits: Joseph Guilliet

MeioMap RHDO (Combined)



Credits: Joseph Guilliet


MeioMap RHDO (Combined)



MeioMap HMM (Father, Mother)

Performances diagnostiques

SNP3_RHDO	Concordant	Non-concordant	Total
Significatif	502 866 (58%)	2 270 (0%)	505 136 (58%)
Non Significatif	307 618 (35%)	59 238 (7%)	366 856 (42%)
Total	810 484 (93%)	61 508 (7%)	871 992 (100%)

SNP3_HMM	Concordant	Non-concordant	Total
Significatif	709 571 (99,8%)	401 (0,1%)	709 972 (99,9%)
Non Significatif	728 (0,1%)	126 (0%)	854 (0,0%)
Total	710 299 (99,9%)	527 (0,1%)	710 826 (100%)

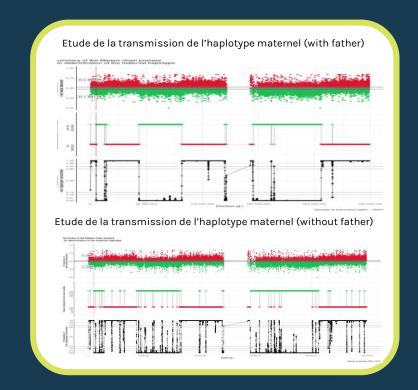
SNP4_RHDO	Concordant	Non-concordant	Total
Conclusif	858 605 (89%)	1 806 (0%)	860 411 (89%)
Non Conclusif	70 910 (7%)	38 470 (4%)	109 380 (11%)
Total	929 515 (96%)	40 276 (4%)	969 791 (100%)

SNP4_HMM	Concordant	Non-concordant	Total
Significatif	862 220 (93,9%)	754 (0,1%)	862 974 (93,9%)
Non Significatif	52 970 (5,8%)	2 705 (0,3%)	55 675 (6,1%)
Total	915 190 (99,6%)	3 459 (0,4%)	918 649 (100%)

Les prochaines étapes

- Masquer les régions problématiques de génome (régions répétées)
- Evaluer les performances sur les gènes OMIM sévères (~1000 gènes)
- Evaluer les performances sur plusieurs familles, en fonction de f

FUTURES DIRECTIONS

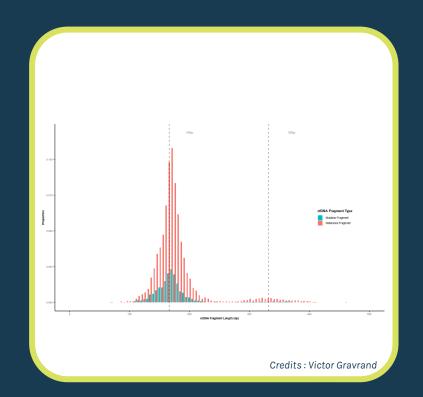

Simulations de sous échantillonnage pour identifier les limites de notre modèle et définir les prérequis

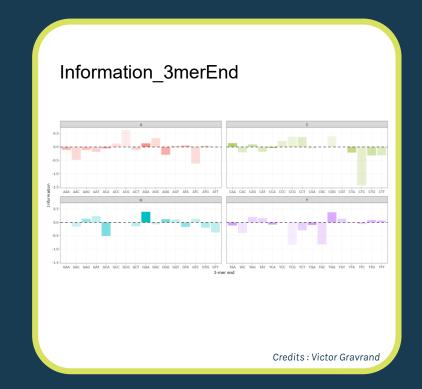
- Simulations de sous échantillonnage pour identifier les limites de notre modèle et définir les prérequis
- Développer une méthode indépendante du père

- √ Simulations de sous échantillonnage pour identifier les limites de notre modèle et définir les prérequis
- Développer une méthode indépendante du père

SNP4_HMM	Concordant	Non-concordant	Total
Significatif	862 220 (93,9%)	754 (0,1%)	862 974 (93,9%)
Non Significatif	52 970 (5,8%)	2 705 (0,3%)	55 675 (6,1%)
Total	915 190 (99,6%)	3 459 (0,4%)	918 649 (100%)

SNP4_woFather_HMM	Concordant	Non-concordant	Total
Significatif	604 982 (65,9%)	13 081 (1,4%)	618 063 (67,3%)
Non Significatif	229 334 (25,0%)	71 252 (7,8%)	300 586 (32,7%)
Total	834 316 (90,8%)	84 333 (9,2%)	918649 (100)


- √ Simulations de sous échantillonnage pour identifier les limites de notre modèle et définir les prérequis
- ✓ Développer une méthode indépendante du père
- ✓ Approches sans cas index, par haplotypage direct


- √ Simulations de sous échantillonnage pour identifier les limites de notre modèle et définir les prérequis
- Développer une méthode indépendante du père
- ✓ Approches sans cas index, par haplotypage direct
- Optimisation des performances du DPNI
 - Fragmentomique
 - Profil de méthylation

- √ Simulations de sous échantillonnage pour identifier les limites de notre modèle et définir les prérequis
- Développer une méthode indépendante du père
- ✓ Approches sans cas index, par haplotypage direct
- Optimisation des performances du DPNI
 - Fragmentomique
 - Profil de méthylation

Remerciements

Pas de conflit d'intérêt

Financements

PHRC

Bioinformatique

Joseph GUILLIET MOABI, Plateforme bio-informatique AP-HP

Biostatistiques

Victor GRAVRAND SMGMSO, Cochin AP-HHP

Techniciens de laboratoire, biologistes, conseiller.es en génétique, cliniciens...

Laboratoire

Victor GRAVRAND **Lucie ORHANT Camille VEREBI** Solène DOPPLER **Philippine GARRET** Mathilde PACAULT France LETURCQ **Emmanuelle GIRODON** Cyril BURIN DES ROZIERS **Thierry BIENVENU**

Le DAN de Port Royal

Olivia ANSFLEM **Vassilis TSATSARIS** Clémence MOLAC Adèle BARILLEC

French consortium (1)

Nathalie COUQUE Marie-Pierre AUDREZET Marie-Claire VINCENT **Annie LEVY**

Institut du Cerveau et de la Moelle

Yannick MARIE **Delphine BOUTEILLER**

French consortium (2)

Séverine DRUNAT **Christine BELLANNE CHANTELOT** Caroline ROORYCK THAMBO **Benoit ARVEILER** Pascale SAUGIER-VEBER Kevin CASSINARI Pascal CHAMBON François LECOQUIERRE Nadège CALMELS **Paul GUEGUEN**

Des questions?

Juliette.nectoux@aphp.fr