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Frequentist versus Bayesian

Approach in Statistics
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Data and Parameters in Statistics

In parametric statistics a data set is becoming available via a random
mechanism.

A distribution f (X |θ) is used to describe the data generation
procedure.

The X refers to the observed data, while θ is the unknown related
parameter.

For example:

X |θ ∼ Bernoulli(θ) can be used under certain assumption to model a
discrete binary random variable.

X |
(
θ1, θ

2
2

)
∼ N

(
θ1, θ

2
2

)
is a distribution that can model continuous

data that obey certain properties.

Goodness of fit tests and plots should be used to examine how well an
assumed theoretical distribution fits the observed data.
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Distribution: random number generation engine
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Treating the unknown parameter θ

Assuming a random sample, the joint distribution of the observed
data x = (x1, x2, . . . , xn) is given by:

f (x|θ) = f (x1, x2, . . . , xn|θ) = L(θ)

which is known as likelihood.

The likelihood is a function of the parameter θ for fixed x (observed
data). It is considered to capture all the information about θ that is
available in the data x.

There are two (mainstream) schools of thought in statistics regarding
the way we deal with the unknown parameter θ:

(1) Frequentist (Neyman - Pearson - Wald)

(2) Bayesian (Bayes)
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Frequentist School of thought in Statistics

Within this school we adopt the frequency based interpretation of
probability.

The frequentist approach attempts to be “objective” in setting the
probabilities. This, heavily relies on the assumption that we are
capable to repeat an experiment, infinite number of times, under
“identical” conditions.

Frequentist probability of an event is defined as the limit of its
relative frequency in a large number of trials.

Example: In the case of a fair coin toss, the frequentist probability
P(H) is 1/2, not because there are two equally likely outcomes
(classical interpretation of probability) but because in repeated trials
the empirical frequency converges to the limit 1/2 as the number of
trials goes to infinity, i.e.

P(H) =
# of heads

# of trials
=

nH
n

n→∞−→ 1

2
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Frequentist School: probability interpretation
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Frequentist School: probability interpretation
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Frequentist School: probability interpretation
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Data and Parameter(s) in Statistics

The distribution that we chose for our data, comes along with a
(univariate or multivariate) set of parameters that fully describe the
random mechanism which produces the data. For example:

X |θ ∼ Bernoulli(θ)

X | (θ1, θ2) ∼ N (θ1, θ2)

Usually we are interested in drawing either:

inference for the unknown parameter(s) θ, i.e., derive point/interval
estimates, hypothesis testing and/or

predictions for future observable(s).
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Frequentist School of thought in Statistics
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Frequentist School of thought in Statistics
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Frequentist School of thought in Statistics
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Bayesian School of thought in Statistics

The data x become available via the random mechanism f (x|θ),
where θ is an unknown constant.

When something is unknown to you, i.e. θ, a reasonable thing to do
is to use probability theory to quantify your uncertainty.

So in the Bayesian school the parameter θ is considered to be a
random variable.

Its distribution, will quantify our (subjective) opinion regarding θ
(before looking the data) with a prior distribution: π(θ).

Then Bayes theorem will do the magic updating the prior distribution
to posterior, in the light of the data.
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Bayesian School of thought in Statistics

The Bayes theorem for distributions is given by:

p(θ|x) = f (x|θ)π(θ)∫
f (x|θ)π(θ)dθ

where:

x = {x1, . . . , xn} are the observed data.

f (x|θ) refers to the likelihood of the data

π(θ) is the prior distribution of the parameter θ,

p(θ|x) is the posterior distribution of the parameter θ, given the
observed data x = {x1, . . . , xn}.

So the Bayes theorem is nothing more that an updating mechanism,
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Bayesian School of thought in Statistics

The Bayesian approach consists of the following steps:

(a) Define the likelihood: f (x|θ).

(b) Define the prior distribution: π(θ).

(c) Compute the posterior distribution: p(θ|x).

(d) Perform decision making: Draw inference regarding θ (point/interval
estimates and hypothesis testing).

(e) Derive the predictive distribution f (xn+1|x1, x2, . . . , xn) of a future
observable and make predictions.
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Internal & External

Bayesian Quality Control

Bayesian Statistical Process Control/Monitoring (SPC/M)
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Introduction to SPC/M

What is quality?
In an abstract way, the quality of a process is inversely related to the
variability of the process.

Second law of thermodynamics guarantees that as time passes, the
entropy (variability) will increase, i.e. the quality will downgrade.

Thus, we need methods and tools to routinely monitor the process
and inform us asap of whether the process’s quality is in jeopardy,
while maintaining a low false alarm rate.

What is Statistical Process Control & Monitoring (SPC/M)?
SPC/M is a method of internal/external quality control, which uses a
statistical approach (control charts) to monitor and control a
process.
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Why Statistical Process Control & Monitoring?

SPC/M aims to detect as soon as possible when a process moves
from the In Control (IC) to the Out of Control (OOC) state, while
we maintain a low false alarm rate.

The OOC states, can refer to anything that “breaks” the statistical
stability of the process and typically this is translated as a parameter
shift, which we wish to detect.

We most often focus our attention to detect shifts that are either:

Transient, a.k.a. outlier, where we have a temporal large shift or

Persistent, where we have a permanent structural change (e.g. change
point) shift that is of medium/small size.
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Why Statistical Process Control & Monitoring?
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Why Statistical Process Control & Monitoring?
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Why Statistical Process Control & Monitoring?
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Why Statistical Process Control & Monitoring?
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Risks in using the frequentist’s approach

In the frequentist based SPC/M the data come from f (X |θ) where θ
presents the unknown process parameter(s), considered a constant.

Parametric control chart methods, like 13s , CUSUM and EWMA, will
require the knowledge of the in control parameter(s) value(s) θ.

In practice, this is achieved employing an offline calibration (phase I)
period, where we derive an estimate of θ (call it θ̃), that will be
plugged into the likelihood: f (X |θ̃), to construct the control chart
and move to online control/monitoring of the process (phase II).

This approach is reasonable as long as all the data are IC. OOC points
during calibration, will result contaminated parameter estimates.

To anticipate the such risks people tend to use simultaneously several
control charts and/or several run rules aiming to increase the power
of detecting OOC scenarios. However, there is no free lunch! The
more the charts/rules you combine the higher the false alarm rate.
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Why Bayesian SPC/M?

The frequentist phase I/II based approach has certain deficiencies:

Phase I assumes iid data from the in control distribution. What if the
parameter experiences transient/persistent shifts during phase I?

Phase I needs to be long to guarantee reliable estimates. What if we
have short runs?

In phase I we can draw decisions only in an offline fashion. What if
we need to have online inference (e.g. biomedical applications).

Issues encountered in phase I will not only affect testing during that
phase. They will greatly influence the phase II chart’s performance.

As more data become available there is no formal mechanism of
updating in phase II the (phase I based) parameter estimates.

Prior information (typically available) regarding θ is left unexploited.
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Why Bayesian SPC/M?

Within the Bayesian approach the unknown parameter(s) θ can be
integrated out, deriving the predictive distribution.

Use of Bayes theorem will update the (power) prior π(θ) to posterior
p(θ|x1, x2, . . . , xn) and then for future observable(s) Xn+1 we get:

f (Xn+1|x1, x2, . . . , xn) =
∫

f (Xn+1|θ) p(θ|x1, x2, . . . , xn) dθ

Based on the predictive distribution we will derive two monitoring
schemes:

PCC: Predictive Control Charts, for detecting transient shifts of large
magnitude (outliers).

PRC: Predictive Residual Cusum: for detection of persistent shifts of
medium/small size (extended to Predictive Ratio Cusum for any
distribution in the exponential family).
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distribution in the exponential family).
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PCC Illustration and Decision Making
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PRC Illustration and Decision Making
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PCC in ECAT’s z-score historic evaluation

ECAT’s EQA program evaluates the deviation of the measured result
from the assigned value.

The performance is statistically quantified using Z-scores.

Univariate and bivariate z-score analysis provides feedback for the
current state of the lab.

In addition, ECAT provides the recent history of the lab’s z-scores to
help them evaluate their longitudinal performance.
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PCC Illustration on ECAT’s z-score history
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Conclusions

In Bayesian SPC/M we introduced the Predictive Control Chart
(PCC) and the Predictive Ratio Cusum (PRC) mechanisms which:

can be used in IQC and EQA monitoring processes

they utilize available prior information and/or historical data,
boosting the performance.

They can identify outlier & change point problems in the process.

They can provide posterior inference for the unknown parameter(s) is
also available.

Both PCC and PRC outperform competing alternatives and their are
found to be robust to various misspecifications.

With low volumes of data, standard statistics might be in trouble!

Modern alternatives call for utilizing available prior information,
opening widely the door to the Bayesian approach!
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PRC paper won the ASQ’s 2024 Brumbaugh Award
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The Bayesian approach rocks!

Thomas Bayes
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Merci beaucoup!
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